3,489 research outputs found

    Seasonal and interannual behaviour of groundwater catchment boundaries in a Chalk aquifer

    Get PDF
    Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics-based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater system

    Evidence for changes in historic and future groundwater levels in the UK

    Get PDF
    We examine the evidence for climate-change impacts on groundwater levels provided by studies of the historical observational record, and future climate-change impact modelling. To date no evidence has been found for systematic changes in groundwater drought frequency or intensity in the UK, but some evidence of multi-annual to decadal coherence of groundwater levels and large-scale climate indices has been found, which should be considered when trying to identify any trends. We analyse trends in long groundwater level time-series monitored in seven observation boreholes in the Chalk aquifer, and identify statistically significant declines at four of these sites, but do not attempt to attribute these to a change in a stimulus. The evidence for the impacts of future climate change on UK groundwater recharge and levels is limited. The number of studies that have been undertaken is small and different approaches have been adopted to quantify impacts. Furthermore, these studies have generally focused on relatively small regions and reported local findings. Consequently, it has been difficult to compare them between locations. We undertake some additional analysis of the probabilistic outputs of the one recent impact study that has produced coherent multi-site projections of changes in groundwater levels. These results suggest reductions in annual and average summer levels, and increases in average winter levels, by the 2050s under a high greenhouse gas emissions scenario, at most of the sites modelled, when expressed by the median of the ensemble of simulations. It is concluded, however, that local hydrogeological conditions can be an important control on the simulated response to a future climate projection

    A seamlessly coupled GIS and distributed groundwater flow model

    Get PDF
    Abstract There are three approaches for coupling groundwater models with GISs, i.e. loose, tight, and seamless. In seamless coupling a model code is written into, and run from within, a GIS. We implemented {BGS} {GISGroundwater} in a {GIS} in this way for the first time. It facilitates the construction and simulation of the model, and the visualisation of the results all within the {GIS} environment. The model consists of a 2D finite-difference groundwater flow model and a simple user-interface. It can represent heterogeneous aquifers, variably confined and unconfined conditions, and distributed groundwater recharge and abstraction. It offers benefits in terms of ease of use and in streamlining the model construction and application process. {BGS} {GISGroundwater} has been validated against analytical solutions to groundwater-head profiles for a range of aquifer configurations. This model lowers barriers to entry to groundwater flow modelling for a wider group of environmental scientists

    The generation of nonlinear internal waves

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, No. 2 (2012): 108–123, doi:10.5670/oceanog.2012.46.Nonlinear internal waves are found in many parts of the world ocean. Their widespread distribution is a result of their origin in the barotropic tide and in the variety of ways they can be generated, including by lee waves, tidal beams, resonance, plumes, and the transformation of the internal tide. The differing generation mechanisms and diversity of generation locations and conditions all combine to produce waves that range in scale from a few tens of meters to kilometers, but with all properly described by solitary wave theory. The ability of oceanic nonlinear internal waves to persist for days after generation and the key role internal waves play in connecting large-scale tides to smaller-scale turbulence make them important for understanding the ocean environment.Christopher Jackson gratefully acknowledges the support of the Office of Naval Research through contract N0001409C0224

    The Explanatory Visualization Framework: an active learning framework for teaching creative computing using explanatory visualizations

    Get PDF
    Visualizations are nowadays appearing in popular media and are used everyday in the workplace. This democratisation of visualization challenges educators to develop effective learning strategies, in order to train the next generation of creative visualization specialists. There is high demand for skilled individuals who can analyse a problem, consider alternative designs, develop new visualizations, and be creative and innovative. Our three-stage framework, leads the learner through a series of tasks, each designed to develop different skills necessary for coming up with creative, innovative, effective, and purposeful visualizations. For that, we get the learners to create an explanatory visualization of an algorithm of their choice. By making an algorithm choice, and by following an active-learning and project-based strategy, the learners take ownership of a particular visualization challenge. They become enthusiastic to develop good results and learn different creative skills on their learning journey

    Calculating the Expected Value of Sample Information in Practice: Considerations from Three Case Studies

    Full text link
    Investing efficiently in future research to improve policy decisions is an important goal. Expected Value of Sample Information (EVSI) can be used to select the specific design and sample size of a proposed study by assessing the benefit of a range of different studies. Estimating EVSI with the standard nested Monte Carlo algorithm has a notoriously high computational burden, especially when using a complex decision model or when optimizing over study sample sizes and designs. Therefore, a number of more efficient EVSI approximation methods have been developed. However, these approximation methods have not been compared and therefore their relative advantages and disadvantages are not clear. A consortium of EVSI researchers, including the developers of several approximation methods, compared four EVSI methods using three previously published health economic models. The examples were chosen to represent a range of real-world contexts, including situations with multiple study outcomes, missing data, and data from an observational rather than a randomized study. The computational speed and accuracy of each method were compared, and the relative advantages and implementation challenges of the methods were highlighted. In each example, the approximation methods took minutes or hours to achieve reasonably accurate EVSI estimates, whereas the traditional Monte Carlo method took weeks. Specific methods are particularly suited to problems where we wish to compare multiple proposed sample sizes, when the proposed sample size is large, or when the health economic model is computationally expensive. All the evaluated methods gave estimates similar to those given by traditional Monte Carlo, suggesting that EVSI can now be efficiently computed with confidence in realistic examples.Comment: 11 pages, 3 figure

    Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases

    Full text link
    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities -vortices and clusters- via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction \phi <0.2 for small restitution coefficients e=0.25--0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a (highdissipation) qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.Comment: 4 figures; to be published in Phys. Rev.

    Keck Spectroscopy of Three Gravitational Lens Systems Discovered in the JVAS and CLASS Surveys

    Get PDF
    We present spectra of three gravitational lens systems taken with the Low Resolution Imaging Spectrograph on the W. M. Keck Telescopes. All of the systems were discovered in the JVAS and CLASS radio surveys, which were designed to find lenses suitable for measuring H0H_0. Previous spectra of these systems had low signal-to-noise ratios, and only one of the source redshifts was secure. Our observations give unambiguous lens and source redshifts for all of the systems, with (zlz_l, zsz_s) = (0.4060,1.339), (0.5990,1.535) and (0.4144,1.589) for B0712+472, B1030+074 and B1600+434, respectively. The observed image splittings in the systems imply that the masses of the lensing galaxies within their Einstein rings are 5.4Ă—1010\times 10^{10}, 1.2Ă—1011\times 10^{11}, and 6.3\times 10^{10} h^{-1} M_{\sun}. The resulting V-band mass-to-light ratios for B0712+472 and B1030+074, measured inside their Einstein ring radii, are \sim 10h (M/L)_{\sun, V}, slightly higher than values observed in nearby ellipticals. For B1600+434, the mass-to-light ratio is 48h (M/L)_{\sun, V}. This high value can be explained, at least in part, by the prominent dust lane running through the galaxy. Two of the three lens systems show evidence of variability, so monitoring may yield a time delay and thus a measurement of H0H_0.Comment: 8 pages, 5 Postscript Figures, uses aastex. To appear in A.

    Acute Caffeine Ingestion Increases Velocity and Power in Upper and Lower Body Free-Weight Resistance Exercises

    Get PDF
    International Journal of Exercise Science 12(2): 1280-1289, 2019. The purpose of this study was to examine the acute effects of caffeine supplementation on velocity and power output during bench press and back squat exercises. Resistance trained males (n = 12) consuming less than 300 mg of caffeine daily, were recruited for this study. In a blinded crossover study design, participants supplemented with 6 mg· kg-1 caffeine or placebo (placebo, gluten-free cornstarch) 60 min prior to exercise. Participants completed 3 × 1 repetition with maximum explosive intent at 80% of their 1-RM for bench and squat exercises with two minute rest periods between each repetition. A linear position transducer was used to measure power and velocity of barbell movement. Each trial was separated by a 72 h washout period. Results indicated that mean velocity (p = 0.027; ES = 1.04) and mean power (p = 0.008; ES = 0.24) were higher during bench press exercise with caffeine versus placebo. Furthermore, mean velocity (p = 0.005; ES=1.06) and mean power (p = 0.020; ES = 0.71) values were higher for back squat exercise with caffeine versus placebo. This study suggests that caffeine ingestion imposes ergogenic benefits by increasing velocity and power in both upper and lower body resistance exercises. However, caffeine had a larger effect on lower body power output versus upper body exercise. Results may hold important implications for using caffeine during training
    • …
    corecore